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1 INTRODUCTION 

Finite element method (FEM) divides system in finite number of small elements. Each element is solved 

with simple set of equations, and then all parts are connected to get solution for large domain. FEM uses 

variational methods to minimize an error function and produce a stable solution. 

A feature of FEM is that it is numerically stable. Errors in the input and intermediate calculations do not 

accumulate and cause the resulting output to be meaningless. In the first step above, the element 

equations are simple equations that locally approximate the original complex equations to be studied, 

where the original equations are often partial differential equations (PDE). The process eliminates all the 

spatial derivatives from the PDE, thus approximating the PDE locally with 

 a set of algebraic equations for steady state problems, 

 a set of ordinary differential equations for transient problems. 

Many of engineering problems were solved with finite element method. 

1.1 PAK - SYSTEM OF PROGRAMS FOR FINITE ELEMENT ANALYSIS 

Program PAK is of level of world known packages for structural analysis (graphics, dynamic memory 

allocation, efficiency, reliability, solution accuracy) and it is built-in finite elements and material models 

according to the state-of-the art theoretical achievements. 

PAK is an open source solver and could be used in various fields for solving partial differential equations, 

for solving a lot of problems in area of engineering, bioengineering, civil engineering, etc.  

Benefits for using PAK: 

 Open source architecture written in FORTRAN 

 Many publications in the peer review journals, benchmark examples 

 Manuals, demos, examples 

 Students are using PAK for education 

 Developed team from University of Kragujevac and BioIRC with many years of experience 

 Parallelization available on different grid platform 

http://en.wikipedia.org/wiki/Numerically_stable
http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Algebraic_equations
http://en.wikipedia.org/wiki/Transient
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1.2 SOLID DYNAMICS 

Principle of virtual work 

The principle of virtual work is one of the most fundamental principles in mechanics. It is used in many 

numerical methods as a basis for the development of necessary relations. Here we derive this principle 

for linear problems: linear material model and small strains. 

Formulation of the principle of virtual work 

Consider a deformable body in equilibrium, shown in Figure 1, subjected to external loadings and with 

given boundary conditions. Let assume that a field of virtual displacements u  is imposed, keeping the 

loading (and stresses) unaltered.  

 
Figure 1: Schematics of deformable body used for the derivation of the principle of virtual work. Virtual 

displacements and virtual strain at a material point P are u and e . Virtual displacements at points of action of 

forces are
( )Cu  and 

( )Du , while the virtual displacements at the supports are restrained. Virtual displacements 

correspond to equilibrium state of the body under given loads. Parts of the surface where stresses and 

displacements are prescribed are S and uS , respectively. 

Those displacements are infinitesimally small and satisfy the displacement boundary conditions. Virtual 

strains corresponding to the virtual displacements are: 

  (1) 

We note here that there are two types of boundary conditions: a) stress (loading) and b) displacement 

boundary conditions. In case a) the stresses can be zero (free surface), or can be given, as in case of 
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pressure loading shown in Figure 1 Part of the surface where the loading is prescribed is denoted by . 

Displacement boundary conditions mean that displacements are prescribed at some points, as the zero 

displacements at the supports A and B, or for part of the surface, such as 0nu  shown in the Figure 1. 

Concentrated forces might act on the body, such as forces 1F  and 2F  shown in Figure 1. It can be 

proved that in case of a linear elastic material and small displacements, the solution for displacement 

field within the body is unique (uniqueness theorem) for given boundary and loading conditions. 

Starting from the equilibrium equations and using the boundary conditions, we finally obtain the 

following result: 

  (2) 

i.e. the virtual work of internal forces intW  and virtual work of external forces extW  are equal. The 

internal and external virtual works are: 

  (3) 

and 

  (4) 

Here  and  are the distributed surface forces and virtual displacements at the surface is . 

Also,  and  are the components of the concentrated force ‘i’ and virtual displacement of the 

material point where this force is acting on the body. Note that the matrix form of virtual work in 

Equation (3) assumes the stress and strain vectors. 

Stiffness Matrix and Nodal Forces. 

 The internal virtual work can be expressed as: 

  (5) 

where we have employed the relation T T Te U B , and the constitutive relationship Ce . Clearly, 

the stiffness matrix K  is 
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  (6) 

The stiffness matrix is symmetric and has dimensions 3 3N N (in our case 24 24 ) and the force 

vector intF  is of size 3N , int (int)1 (int)1 (int)1 (int) (int) (int)( , , ,... , , )N N N

x y z x y zF F F F F F F .  

In the case when body forces are present, the corresponding nodal forces are calculated from the 

equality of virtual work: 

  (7) 

where Vf is the force per unit volume, and VF is the vector of equivalent volumetric nodal forces. Here, 

the displacement interpolation has been used.  

The external nodal forces resulting from the pressure on an element surface are calculated by 

employing again the equivalence of virtual work. A simple approximation for the 8-node element is to 

calculate the total force as 
pF pA (where p as the mean pressure and A is the area of the element 

side) and use / 4pF at each node in the mean normal surface direction. 

Calculation of the above volumetric integrals must be performed numerically.  

Differential equations of motion 

Consider a material body subjected to external time dependent forces 1 2( ), ( ),...F t F t producing motion 

and deformation, as schematically shown in Figure 2.  

 
Figure 2:A schematic representation of dynamics of a deformable body. Elementary mass dm within the finite 

element; elementary inertial force 
indF and the time variable nodal force components at a node K. 

The motion is such that we must take into account inertial forces. The inertial force intdF of a mass dm

is 

T

V

dVK B CB

T V T T V T V V T V

V V V

dV dV dVu f U N f U F F N f
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  (8) 

Where 2 2/u d u dt is the acceleration, is material density, and dV is the elementary volume. The 

inertial force is a volumetric force and the equivalent nodal inertial force vector inF follows from 

Equation (7): 

 
 

(9) 

Where  is the element mass matrix: 

 
 

(10) 

And U  is the nodal acceleration vector. In derivation of Equation (10) the relationship u NU is used, 

which follows from the interpolation of displacements within the finite element. Note that the mass 

matrix is symmetric, with dimension 3 3N N for a 3D finite element. 

The derived mass matrix is called the consistent mass matrix. In practical applications of dynamic FE 

analysis, a simplified, so-called lumped mass matrix is used. The lumped mass matrix is a diagonal matrix 

with the non-zero terms equal to the element mass divided by the number of element nodes. 

When damping (viscous) effects are present within the material, the elementary damping force can be 

expressed as: 

  (11) 

Where b is the damping (viscous) coefficient. Then, following the above derivation for the element 

inertial nodal force vector, we obtain the element nodal damping vector wF as: 

 
 

(12) 

where wB  is the element damping matrix: 

 
 

(13) 

We now substitute the inertial and damping nodal force vectors Equation (9) and Equation (12) into the 

element equilibrium equation, and further assemble the equilibrium equations to obtain: 

 
 

(14) 
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where , w

sys sysM B and 
sysK are the mass, damping and stiffness matrices of the system, respectively; and 

ext

sysF is the system external force vector that includes the external concentrated, surface and body 

forces. Equation (14) represents the differential equation of motion of a material system discretized into 

finite elements. 

1.3 FLUID DYNAMIC 

Navier-Stokes equation was used for 3D viscous fluid inside the chambers (balance of linear momentum, 

Equation (15)) together with incompressibility condition (Equation (16)) 

 

22 vv v vp ji i iv jt x x x x x xj i j j j i

 (15) 

 0i

i

v

x
 (16) 

In these equations iv  is the fluid velocity in directions ix ,  is the fluid density, p  is pressure,  is the 

dynamic viscosity; and summation is assumed on the repeated (dummy) indices, , 1,2,3i j . 

Code was validated using the analytical solution for shear stress and velocities through curve tube. For 

calculation was used “penalty” formulation. 

Incremental – iterative scheme used in PAK solver for the certain time step and equilibrium iteration is 

show in the equations bellow: 

 

11 1 1

1

1 ii i i t tit t t t t t

it ti
t

vv vv v vv vp

T
p

vp

FM K K J K v

FpK 0

 (17) 

The left upper index “t+ t” denotes that the quantities are evaluated at the end of time step, i  is the 

number of iteration. The matrix VM
 
is mass matrix, VVK

 
and VVJ  are convective matrices, 

VK
 
is the 

viscous matrix, VpK
 
is the pressure matrix, and VF

 
and pF

 
are forcing vectors. 

Matrix equations will change if penalty formulation is used. For penalty formulation there is a constraint 

for incompressibility, as it is given in Equation (18): 
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 0
p

divv  (18) 

Here in Equation (18) parameter  is a relatively large positive number (scalar). On that way ratio /p

becomes a really small number, practically zero. 

The incremental-iterative form of the equilibrium equations are 

 
1 1 1 1 11 ˆ ˆi i i i i it t t t t t t t t t

t
v vv v v vv v vM K K K J K v F  (19) 

Arbitrary Lagrangian Eulerian (ALE) formulation 

ALE formulation was employed for fluid domain and mesh moving algorithm for motion of the solid and 

fluid mesh. ALE formulation are derived and transformed to the FE equations of balance of linear 

momentum (Donea et al. 1982 [2], Donea 1983 [3], Nitikitpaiboon and Bathe 1993 [9], Filipovic 1999 [4], 

Filipovic et al. 2006 [5]). 

The fluid flow is modeled here using a moving mesh. The reference domain - the FE mesh, in which usual 

FE calculations are performed, is moving in space. The control volume, which in this case is the volume 

of a finite element, changes with time. At a point G of the FE mesh Figure 3, the fluid velocity is v and the 

mesh velocity is mv .Consequently, in deriving the FE equations for mass balance and balance of linear 

momentum, the fact that the reference domain is not stationary must be taken into account. 
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Figure 3: Schematics of the FE modeling according to the ALE formulation (2D representation). A FE mesh attached 

to the solid is moving in space, changing also its size and shape. The current position of the fluid particle is F and 

the point of the mesh (grid) is G, with velocities v and mv ; their initial positions are 
0F and 

0G . Note that the 

fluid point 
0F initially at 

0G is at space position F different from F , displaced by a vector u . The coordinate 

system in the reference domain 1 2,  moves with the reference domain, without rotation. 

The Navier – Stokes equations of balance of linear momentum can be written in the ALE formulation 

(Equation 20). 

  (20) 

Here iv  are the velocity components of a generic fluid particle and m

iv  are the velocity components of 

the point on the moving mesh occupied by the fluid particle. The symbol ‘ ’ denotes the mesh-

referential time derivative, i.e. the time derivative at a considered point on the mesh,  

  (21) 

 

The Cartesian spatial coordinates of a generic fluid particle are ix  and of the corresponding point on the 

mesh are i . In deriving Equation (20) we used the following expression for the material derivative

( ) /iD v Dt , 

  (22) 

The first term on the right-hand side is the so-called ‘the mesh-referential time derivative’, while the 

second is the convective term. 

The Galerkin method for the space discretization of the fluid domain can now be applied. The finite 

element equations for a 3D domain are: 

  (23) 
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  (24) 

The integration is performed over the volume V of a finite element, which now is time dependent, using 

the Gauss theorem. 

Consider first the system of Equations (23) which is nonlinear with respect to the velocities, but also 

with the element volume change. In an incremental analysis a linearization with respect to time must be 

performed using the known values at the start of time step n. The approximation for a quantity F can 

be written as: 

  (25) 

This relation is further applied to the left and right hand sides, (LHS) and (RHS), of Equation (23) to 

obtain 

  (26) 

In calculating the mesh-referential time derivatives we use the relations: 

  (27) 

and 

  (28) 

With these linearizations the Equations (23) and (24) can be written as 

  (29) 

and 

  (30) 
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The integrals are evaluated over the known FE volumes and surfaces at start of time step. Further, some 

of the terms are calculated using the values at the last iteration. Of course, the mesh-referential time 

derivatives *V  and *P  are replaced by * /V V t  and * /P P t  to obtain the incremental 

algebraic equations. 

The presented formulation of the FE modeling is necessary when the fluid boundaries change 

significantly over the time period used in the analysis. It is particularly convenient when the boundary of 

the fluid represents a deformable solid, as Figure 3 suggests, for appropriate modeling the solid-fluid 

interactions. Finally, note that the mesh motion is arbitrary and for each problem can be specifically 

designed. Also, it is important to emphasize that the solution for the fluid flow does not depend on the 

FE mesh motion (Filipovic et al. 2006 [5]).  

1.4 SOLID – FLUID INTERACTION 

Because there are fluid and solid in model and contact between two of them, solid – fluid interaction 

exists. Assembling of the system of the equations for solid – fluid interaction could be accomplished in 

two manners: loose coupling and strong coupling. Here, we use loose coupling method. 

Loose coupling method 

The loose coupling approach consists in the successive solutions for the solid and fluid domains. 

Consider fluid flow with a deformable solid shown schematically in the Figure 4. The solid deforms due 

to loading from the fluid which generates surface forces that are transferred to the solid. The stresses 

acting on the solid surface are the tangential stresses  and  and the normal stress . The flow 

domain changes due to the solid deformation, while the common nodes have the same displacements 

and velocities for the fluid and solid. 

rad ax n
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Figure 4: Illustration of the solid-fluid interaction. A fluid is flowing through the deformable solid producing 

tangential and normal stresses on the solid surface. The common solid and fluid FE nodes have the same 

displacements and velocities. 

The solution is obtained iteratively, and the iteration counter in the solid-fluid interaction loop is ‘I’. We 

have denoted by ( 1) ( )n I

Sf the stress within the fluid, at the common boundary S. Also, 
disp

and 
velocity

are the error tolerances, respectively, for the norms of displacement increments of the solid and for the 

velocity increments. Other convergence criteria may also be used, such as the error in the ‘unbalanced 

force’ or energy (Bathe 1996 [1], Kojic and Bathe 2005 [7]). 

For the model we applied following scheme: 

1. For the current geometry of the fluid domain determine fluid flow with use of the ALE 

formulation (Filipovic et al. 2006 [5]). Solid velocities at the common fluid – solid surface are 

considered as the boundary condition for the fluid. 

2. Calculate the loads, arising from the fluid, which act on the solid. 

3. Determine deformation of the solid taking the current loads from the fluid domain. 

4. Check for the overall convergence which includes fluid and solid. If convergence is reached, go 

to the next time step. Otherwise go to the next iteration, go to the step 1. 

The fluid domain geometry and velocities at the common solid-fluid boundary for the new calculation of 

the fluid flow are updated (Kojic et al. 2008 [8], Isailovic et al. 2013 [6]). In case of large solid 

displacements, the FE mesh for the fluid flow domain is updated. Go to step 1. 

A graphical interpretation of the algorithm for the solid-fluid interaction problem is shown in Figure 5 

(Filipovic 1999 [4]). 
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Figure 5:Block-diagram of the solid-fluid interaction algorithm. Information and transfer of parameters between 

the CSD (computational solid dynamics) and CFD (computational fluid dynamics) solvers through the interface 

block. 

Validation for the loose coupling solid – fluid interaction solver 

For validation of the loose coupling solid – fluid interaction solver was used benchmark of viscous flow in 

a collapsible tube. Fluid flow through collapsible tubes is a complex problem due to the interaction 

between the tube-wall and the flowing fluid. 

 

Figure 6: Collapse of a tube loaded by external pressure 
*

extp , and with flowing fluid through the tube. a) Tube 

geometry before collapse; b) Shape of the tube after collapse; c) Pressure distribution along the collapsed tube (at 
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the tube center line).Data: Lengths [cm ] 0 1, 10, 0.05R L h ; Non-dimensional volume flux 

4 5

08 / 15 10q VL R E , dimensionless external pressure 
* 4/ 6.38 10ext extp p E . 

It is assumed that the collapse is symmetric with respect to both x-y and x-z planes. One quarter of the 

fluid flow field is modeled due to symmetry with respect to the two coordinate planes. Boundary 

conditions consist of: prescribed velocity at the inlet nodes (zero-velocity at the interface surface with 

the shell elements) and the symmetry conditions at the symmetry planes. Fluid flow is calculated by 

using 1250 eight-node 3D elements, and 500 four-node shell elements for the model of the tube wall, 

with the wall thickness ratio h/R0=1/20 (Filipovic 1999 [5]). 

We keep the fluid pressure equal to zero at the tube outer end, and induce the tube collapse by 

increasing the chamber pressure, *

extp . The tube is first inflated when * 0extp , deforming axi-

symmetrically. A small geometric irregularity is introduced to initiate the collapse. Then, the external 

pressure is increased and when it exceeds a critical value, the wall locally loses its stability and the tube 

buckles as shown in Figure 6b). Figure 6c) shows the pressure drop along on the tube center line. 
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